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ABSTRACT

This paper proposes a new intrinsic image decomposition

method that decomposes a single RGB-D image into re-

flectance and shading components. We observe and ver-

ify that, a shading image mainly contains smooth regions

separated by curves, and its gradient distribution is sparse.

We therefore use �1-norm to model the direct irradiance

component—the main sub-component extracted from shad-

ing component. Moreover, a non-local prior weighted by a

bilateral kernel on a larger neighborhood is designed to fully

exploit structural correlation in the reflectance component to

improve the decomposition performance. The model is solved

by the alternating direction method under the augmented La-

grangian multiplier (ADM-ALM) framework. Experimental

results on both synthetic and real datasets demonstrate that

the proposed method yields better results and enjoys lower

complexity compared with two state-of-the-art methods.

Index Terms— Intrinsic decomposition, RGB-D image,

sparse representation, non-local correlation.

1. INTRODUCTION

Intrinsic image decomposition is an essential task for many

applications in computer vision and graphics[1, 2, 3]. It aims

at decomposing an image into several specific components

that encode material and lighting characteristics of the scene

described in the image. The most common decomposition

is to separate the image into reflectance and shading compo-

nents [4]. The reflectance image represents the reflectance

property of object materials under invariant light, while the

shading image describes all effects introduced by light. Thus

a successful decomposition would be beneficial to many ap-

plications, such as image relighting, image editing, and shape

from shading.

Image formation is a complex process involved with many

factors and the process is irreversible. The same image might

be obtained from different configurations of scenes and light-

ing conditions. Therefore, extracting the reflectance and
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shading components from an image is an ill-posed problem.

To overcome this, many priors and assumptions, including

color Ritinex [5], texture cues [6] and color sparsity [7], are

proposed. Despite consistent effort on this problem, decom-

position results are still unsatisfactory for generic images due

to severe its ill-poseness. With the commoditization of depth

cameras, several methods use depth information for better in-

trinsic decompose of RGB images [3, 8, 9]. Most works im-

pose a smoothness prior, usually by the total energy (equiv-

alently �2 norm) of finite differences to make the problem

well-posed [8, 9]. However, such �2-norm based priors tend

to penalize large differences, and are easily affected by noise

and outliers. The reflectance image of a natural scene is ap-

proximately piecewise constant and the shading image varies

smoothly except for boundaries of different surfaces.

In this paper, we propose a new intrinsic image decom-

position method for a single RGB-D image with sparse and

non-local priors. Inspired by [8], we decompose the RGB-

D image into reflectance and shading components, where the

shading part is further separated into three sub-components,

i.e., direct irradiance, other irradiance and illumination color.

We use �1 norm to model the reflectance component and the

direct irradiance component (the dominant sub-component

extracted from shading component) based on our observa-

tion that finite differences of the reflectance and shading im-

ages are sparse. We also design a non-local prior weighted

by a bilateral kernel on a large neighborhood to fully ex-

ploit structural correlation in the reflectance image, and the

weight between two neighboring pixels is computed based

on the patches similarity centering on the pair-wise pixels

from the chromaticity information. We adopt the alternat-

ing direction method under the augmented Lagrangian mul-

tiplier (ADM-ALM) framework [10] to solve the model. The

proposed method is evaluated on synthetic dataset and real-

world datasets. Results demonstrate that the proposed method

yields better intrinsic decomposition and enjoys low complex-

ity compared with the state-of-the-art methods. Our code will

be publicly available on the project website.

The main contributions of this work are summarized as:

• A sparsity constraint is imposed on the reflectance com-

ponent and the direct irradiance sub-component in the
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shading component. Based on our observation and

analysis, the local finite differences of reflectance and

shading images present Laplacian distributions, and

can be well-modeled by using �1-norm as a regularizer.

• A non-local prior that considers non-local similarity

weighted by a bilateral kernel is designed to fully ex-

ploit structural correlation in the reflectance compo-

nent, remedying the short-sighted local correlation in

former methods.

• The proposed method is quite fast. For 1024 × 436
images, the proposed method takes 140 seconds on av-

erage.

2. RELATED WORK

Decomposing an image into a reflectance image and a shad-

ing image is first introduced by Barrow and Tenenbaum [4].

Then, there are many scientists putting effort into developing

models to produce better decomposition results. The Ritinex

theory [5] is an early and successful model assuming that re-

flectance changes bring in large gradient variations while the

small gradient variations are caused by shading changes. Al-

though the Ritinex theory works well in a Mondrian world, it

is not suitable for all the real-world images. Later models and

theories utilize additional information, such as multiple im-

ages [11], chromaticity gradient [1] and user-interaction [12].

Dai et al. propose a co-intrinsic method based on �0-norm

which simultaneously decomposes a pair of images with the

same foreground [2]. Besides, some algorithms aim at per-

forming intrinsic decomposition on video sequences[13, 14].

Recently, with the development and commoditization of

depth sensors, such as Kinect, it is convenient to simultane-

ously capture an RGB image and a depth image. Therefore,

some methods use depth cues to construct their models[3, 8,

9]. Shi et al. [9] propose an intrinsic decomposition method

for RGB-D videos. Barron and Malik [3] propose a joint

estimation for shape, illumination and reflectance, but this

method is time-consuming (about 3 hours for a 1024 × 436
image). Chen and Koltun [8] propose a simple model for in-

trinsic decomposition of RGB-D images. Jeon et al. [15] im-

prove the decomposition quality by handling textures in the

intrinsic image decomposition. However, most above works

use �2-norm regularization that is sensitive to noise and out-

liers.

In this paper, we propose a new intrinsic image decom-

position model for a single RGB-D image with sparse and

non-local priors, based on the observation that the reflectance

and shading images are sparse on the finite-difference do-

main. The model is efficiently solved by the alternating di-

rection method under the augmented Lagrangian multiplier

framework.

3. MOTIVATION

Sparse Prior on Reflectance and Shading: Many methods

use quadratic smoothness prior assuming the Gaussian distri-

bution of pairwise differences for the reflectance and shading

components. However, for most natural scenes, reflectance

and shading are piecewise smooth. Therefore, the differences

between pixels are sparse, and should be modeled by a heavy-

tailed distribution, rather than being dense and modeled by a

rapidly vanishing Gaussian distribution. This is verified in

Fig.1. The normalized histograms of differences in the neigh-

borhood are presented, together with fitted Laplacian distribu-

tions and Gaussian distributions. For the reflectance compo-

nent, we connect every pixel with 4 random pixels in a 9× 9
window. For the shading component, we choose 12 nearest

points in a six-dimensional space for each point. As shown in

the figure, the Laplacian distribution fits the histogram sig-

nificantly better than the Gaussian distribution, suggesting

the use of sparsity-promoting �1-norm in the reflectance and

shading components.

Non-local Prior on Reflectance: Usually, pixels with similar

color in the RGB image tend to belong to the same material

and thus have the same reflectance value. Traditional meth-

ods [8, 15] use local correlation and pixel chromatic differ-

ence to judge the pair-wise pixel similarity. This short-sighted

local judgement cannot provide enough information to pre-

serve global structures in reflectance component, which leads

to the information cross-leakage between different compo-

nents. Exploiting non-local correlation has received tremen-

dous success in various fields such as image denoising [16]

and depth recovery [17]. This motivates us to use a patch-

based non-local prior weighted by a bilateral kernel to better

regularize the reflectance component.

(a) (b)

Fig. 1. Normalized histograms and the associated fitted

Laplacian and Gaussian distributions for pairwise errors of (a)

reflectance and (b) shading for MIT-Berkeley Intrinsic Images

dataset [3].

4. THE PROPOSED METHOD

Let I be the input RGB image. Our task is to decompose

I into a reflectance image R and a shading image S. Each

color channel obey the following multiplicative observation

model: Ip = RpSp for each pixel p. The shading image S
is influenced by several physical factors, including geome-



try, shadows and inter-reflections. Therefore, referred to [8],

we further decompose S into three components. Specifically,

the RGB image I is decomposed into four components: a re-

flectance image R, a direct irradiance image D, an other irra-

diance image O and an illumination color image C. The re-

flectance image R describes how the materials of the object

reflect the incoming light. The direct irradiance image D rep-

resents the irradiance that is modeled by local shading algo-

rithms without considering shadows or inter-reflections. The

other irradiance image O encodes the effects that D does not

take into account. The illumination color image C represents

the color of environment illumination. Finally, the value of

each pixel p in S is computed according to Sp = DpOpCp.

For each pixel p, it satisfies Ip = RpDpOpCp, and we trans-

form it into logarithmic domain by taking logarithms on both

sides: ip = rp + dp + op + cp, which is an additive model for

easier mathematical manipulation.

The intrinsic decomposition model is formulated as the

minimization of the following energy function:

E(X)
X=(R,D,O,C)

= Edata(X) + Esmooth(X), (1)

where Edata (X) and Esmooth (X) are the data term and the

smoothness term, respectively. The data term measures the to-

tal error of four components compared with the original RGB

image, while the smoothness term consists of four regulariz-

ers that make the original ill-posed problem well-posed.

The data term is defined as follows:

Edata =
∑
p

∥∥√lum(Ip)(ip − rp − 1dp − 1op − cp)
∥∥2
2
,

(2)

where dp and op are scalar while ip, rp, cp are three-

dimensional vectors, 1 = [111]� is a vector with all ele-

ments being one. lum(Ip) is the illumination of Ip and we

use
√
lum(Ip) + ε to avoid the case in which lum(Ip) equals

zero (ε = 0.001).

For the compact representation in algorithm derivation,

we define the following matrix/vector form of the variables to

reformulate the data term (2):

W = diag
(√

lum(i1), · · · ,
√

lum(in)
)
,

K = [1 1 1] .
(3)

Then, the data term is rewritten as:

Edata =
∥∥W(I−R−DK−OK−C)

∥∥2
2
. (4)

The smoothness term is defined as

Esmooth = λRER+λDED+λOEO+λO′EO′+λCEC , (5)

where λR, λD, λO, λO′ and λC are the weights for the

smoothness terms: ER, ED, EO, EO′ and EC , respectively.

These terms are described below.

Reflectance: The smoothness term ER of reflectance compo-

nent is defined as:

ER =
∑

{p,q}∈NR

√
αp,q

∥∥rp − rq
∥∥
1
, (6)

where NR represents the set of pairwise correlations defined

on random neighboring pixels, and αp,q is pairwise weighting

coefficient between pixel p and q.

Recent advances on image modeling show that image pro-

cessing using non-local correlation achieves significant im-

provements over previous schemes using local correlation

alone [16, 17]. Therefore, we design the coefficient αp,q on

a non-local neighborhood with a bilateral kernel. Let Pp be

a patch centered at pixel p. For every pixel p, we first gen-

erate K random neighbors N (p) = {Pqi}Ki=1 over the entire

image. Then, the coefficient αp,qi is defined as follows:

αp,qi = exp

( ||Bp ◦ (Pp − Pqi)||22
σ2
1

)
, (7)

where σ1 controls the decay rate of the exponential function, ◦
represents the element-wise multiplication. We use a bilateral

filter kernel Bp to weight the distance of neighboring patches,

which has a strong response for pixels of similar intensities to

the center pixel p, and hence carries the shape information

of local image structures. The kernel Bp is defined in the

extracted patch Pp as follows:

Bp(p, t) = exp

(
−||p− t||22

σ2
2

)
exp

(
−||Ip − It||22

σ2
3

)
, (8)

where t is a neighboring pixel of pixel p in the patch Pp, and

σ2 and σ3 are parameters of the bilateral kernel to adjust the

importance of the spatial distance and intensity difference, re-

spectively.

We define a matrix QR ∈ {√αp,q,−√
αp,q}|NR|×|I| for

concise presentation. Concretely, each row of QR corre-

sponds to a pair in NR and each column corresponds to a

pixel in I. Each row in QR has only two nonzero entries. For

example, assuming the rth row in QR associates with the pair

{p, q}, then the entry linking to the reference pixel p is set

at
√
αp,q , while the one linking to the neighboring pixel q is

set at −√
αpq . So, the smoothness term of the reflectance is

formulated in the matrix form as:

ER =
∥∥QRR

∥∥
1
. (9)

Direct irradiance: The direct irradiance component repre-

sents the “virtual” illumination in which every points would

have received from the light source directly without other ob-

jects’ contributions. Hence, two points in the scene have simi-

lar direct irradiance when they have similar positions and sim-

ilar normals. According to our piecewise smooth assumption,

the smoothness of the direct irradiance is formulated as:

ED=
∑

{p,q}∈ND

∥∥dp − dq
∥∥
1
, (10)



where ND denotes the set of the pairwise connections.

We connect every point with k nearest points in the six-

dimensional space which consists of the 3D position and the

surface normal of the point. The surface normal of p is com-

puted from the depth values of p and nearby points.

Similar to the smoothness term of reflectance, we define a

differential matrix QD ∈ {1,−1}|ND|×|I|. Every row of QD

corresponds to a pair in ND and each column corresponds to

a point in I. There are only two nonzero values in each row

of QD. If the rth row in QD associates with the pair {p, q},

the pth column in this row will be set at 1 and the qth column

will be set at -1. Then, we reformulate the smoothness term

of the direct irradiance as follows:

ED =
∥∥QDD

∥∥
1
. (11)

Other irradiance: Similar to [8], we use the other irradiance

component to describe the objects’ contributions including

shadow, occlusion and inter-reflectance. Hence, the smooth-

ness prior imposed on this irradiance is that two points have

similar values when they have similar positions in the object

space. The prior is formulated as follows:

EO=
∑

{p,q}∈NO

∥∥op − oq
∥∥2
2
. (12)

We construct NO, the set of the pairwise connections in the

other irradiance component, by connecting every point with

K nearest other points in the three-dimensional object space.

For the compact representation, we define a differential ma-

trix QO ∈ {1,−1}|NO|×|I| like QD. Then, the smoothness

term of the other irradiance component is rewritten as

EO =
∥∥QOO

∥∥2
2
. (13)

Besides, a simple constraint on the magnitude of other irradi-

ance is defined as

EO′=
∑
p

∥∥op∥∥22. (14)

We introduce an identity matrix QO′ ∈ R
|I|×|I| for the com-

pact representation and Eq. (14) is rewritten as

EO′ =
∥∥QO′O

∥∥2
2
. (15)

Illumination color: Similar to [8], the illumination color

component C is defined as

EC=
∑

{p,q}∈NC

√
γp,q

∥∥cp − cq
∥∥2
2
, (16)

where
√
γp,q adjusts the influence of the Euclidean distance

between 3D positions of p and q, and γp,q is computed as

γpq = 1−
∥∥p− q

∥∥
2

max
{p,q}∈Nc

∥∥p− q
∥∥
2

, (17)

where p and q represent the 3D positions of p and q, respec-

tively.

We define a matrix QC ∈ {√γp,q,−√
γp,q}|NC |×|I| for

concise presentation. The definition of QC and NC is similar

to the definition of QR and NR. Then, we rewrite Eq. (16) as

Ec=
∥∥QCC

∥∥2
2
. (18)

The final energy function has the following compact form

with matrix-vector notations:

min
X=(R,D,O,C)

∥∥W(I−R−DK−OK−C)
∥∥2
2
+ λR

∥∥QRR
∥∥
1

+ λD

∥∥QDD
∥∥
1
+ λO

∥∥QOO
∥∥2
2
+ λO′

∥∥QO′O
∥∥2
2

+ λC

∥∥QCC
∥∥2
2
.

(19)

To solve the problem, we first transform the minimization

(19) into the following form with an auxiliary variable A and

B:

min
R,D,O,C,A,B

∥∥W(I−R−DK−OK−C)
∥∥2
2
+ λR

∥∥A∥∥
1

+ λD

∥∥B∥∥
1
+ λO

∥∥QOO
∥∥2
2
+ λO′

∥∥QO′O
∥∥2
2

+ λC

∥∥QCC
∥∥2
2
,

s.t. A = QRR,

B = QDD.

(20)

Then, we solve the constrained minimization (20) using the

augmented Lagrangian method (ALM) by converting it to it-

erative minimization of its augmented Lagrangian function:

L(A,B,R,D,O,C,Y1Y2, μ1, μ2)

= ||W(I−A−DK−OK−C)||22
+ λR||A||1 + λD||B||1 + λN ||QOO||22
+ λO′ ||QO′O||22 + λC ||QCC||22
+ 〈Y1,A−QRR〉+ μ1

2
||A−QRR||2F

+ 〈Y2,B−QDD〉+ μ2

2
||B−QDD||2F ,

(21)

where (μ1, μ2) are positive constants, (Y1,Y2) are La-

grangian multipliers, and 〈·, ·〉 denotes the inner product of

two matrices considered as long vectors. We resort to the al-

ternate direction method (ADM) [10] to optimize A, B, R,

D, O and C separately at each iteration

5. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed

method on the NYU dataset [3] (Section 5.1) and the MPI-

Sintel dataset [18] (Section 5.2), compared with two state-of-

the-art methods [8, 15]. To test the robustness of the proposed



(a) (b) (c) (d)

Fig. 3. Results on one image from MPI-Sintel dataset: (a) input RGB image and depth map, (b) results of [8], (c) results of

[15], and (d) our results.

(a) (b) (c) (d)

Fig. 2. Results on one image from NYU dataset: (a) input

RGB image and depth map, (b) results of [8], (c) results of

[15], and (d) our results.

method, we also compare the three methods on the noisy

dataset in Section 5.3. The comparison for running time is

given in Section 5.4. In our experiments, the weights λR, λD,

λO, λO′ and λC are set at 0.001, 10, 0.1, 10, and 5, respec-

tively. The empirical parameters σ1, σ2 and σ3 are set at 3.05,

1000, and 0.2, respectively. We initialize the reflectance R by

using the log-transformed input image and initialize the other

three variables D,O,C with zero matrices.

5.1. Results on NYU Dataset
We test 15 images from the NYU dataset [3], compared with

two other methods [8, 15]. Fig.2 gives the results for one

image. For the shading component, the result of method [8]

is a little over-smoothed. Although the method [15] gener-

ates more details, some textures, e.g., on the back of chair,

are wrongly preserved. On the contrary, our method provides

more accurate geometric information in the shading compo-

nent. For the reflectance component, the result of method [8]

is a little bright and the result of method [15] is a little dark,

while our method gives compromised result.

5.2. Results on MPI-Sintel Dataset
Because there are no ground-truth reflectance images and

shading images in the NYU dataset, we quantitatively eval-

uate the performance of the proposed method on 12 images

from the MPI-Sintel dataset [18]. As mentioned in [18], al-

though the images of the MPI-Sintel dataset are computer-

generated, they have similar statistics to natural images. With

the ground truth data in this dataset, we can evaluate our

method quantitatively and intuitively. Because there are some

images unsuitable for evaluation due to the defects in the pro-

vided ground-truth reflectance, we chose 12 images in this ex-

periment. Table 1 gives the quantitative results compared with

two state-of-the-art methods [8, 15]. We use two error mea-

sures for evaluation: the standard mean-squared error (MSE)

and the local mean-squared error (LMSE) [1]. Since the

ground-truth is defined up to a scale factor, each image is ad-

justed by a estimated scaling factor to minimize the error[1].

As shown in the table, the reflectance images and the shading

images obtained by the proposed method produce smaller er-

ror values, which means the results of our method are more

similar to the ground-truth images. Qualitative evaluation for

one image is shown in Fig.3.

Table 1. Quantitative evaluation on MPI-Sintel dataset.

MSE LMSE
Method

Reflectance Shading Average Reflectance Shading Average

[8] 0.0388 0.0277 0.0333 0.0274 0.0195 0.0235

[15] 0.0479 0.0362 0.0421 0.0229 0.0183 0.0206

Ours 0.0270 0.0268 0.0269 0.0163 0.0176 0.0169

Table 2. Quantitative evaluation on noisy MPI-Sintel dataset.

MSE LMSE
Method

Reflectance Shading Average Reflectance Shading Average

[8] 0.0413 0.0281 0.0347 0.0300 0.0198 0.0249

[15] 0.0497 0.0361 0.0429 0.0262 0.0184 0.0223

Ours 0.0275 0.0269 0.0272 0.0168 0.0178 0.0173

5.3. Results on Noisy MPI-Sintel Datasets

In order to evaluate the ability of the proposed method to

suppress noise, we perform a quantitative comparison on the

noisy images. The noisy images are obtained by adding slight

additive white Gaussian noise n with σ = 5 to the 12 im-

ages from the MPI-Sintel dataset. The quantitative results are

given in the Table 2, compared with two methods [8, 15]. It



can be seen that our method is more robust to noise by using

the sparse priors on the reflectance and shading.

5.4. The Running Time

We compare the average running times of different methods

on the images with different sizes in Table 3. All the experi-

ments are run on a desktop with Intel Core i7 CPU 3770 and

32GB RAM. In a whole, our method is fast without loss of

accuracy.

Table 3. Comparison of running times.

Method

Running time Image Size
1024× 436 620× 420

[8] 1160.7s 660s

[15] 121.1s 70.9s

Ours 139.8s 103.6s

6. CONCLUSIONS

In this paper, we present a new method for intrinsic decom-

position from a single RGB-D image. We exploit non-local

and sparse priors to make the problem well-posed. The alter-

nating direction algorithm under the augmented Lagrangian

multiplier (ADM-ALM) framework is adopted to solve the

minimization of the proposed energy function. Experimental

results demonstrate that our method produces better qualita-

tive results and lower quantitative errors, and the results on the

noisy images prove the robustness of the proposed method.

The code of our method will be publicly available on our

project website.
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